Platinized Graphene/ceramics Nano-sandwiched Architectures and Electrodes with Outstanding Performance for PEM Fuel Cells

نویسندگان

  • Xu Chen
  • Daping He
  • Hui Wu
  • Xiaofeng Zhao
  • Jian Zhang
  • Kun Cheng
  • Peng Wu
  • Shichun Mu
چکیده

For the first time a novel oxygen reduction catalyst with a 3D platinized graphene/nano-ceramic sandwiched architecture is successfully prepared by an unusual method. Herein the specific gravity of graphene nanosheets (GNS) is tailored by platinizing graphene in advance to shorten the difference in the specific gravity between carbon and SiC materials, and then nano-SiC is well intercalated into GNS interlayers. This nano-architecture with highly dispersed Pt nanoparticles exhibits a very high oxygen reduction reaction (ORR) activity and polymer electrolyte membrane (PEM) fuel cell performance. The mass activity of half cells is 1.6 times of that of the GNS supported Pt, and 2.4 times that of the commercial Pt/C catalyst, respectively. Moreover, after an accelerated stress test our catalyst shows a predominantly electrochemical stability compared with benchmarks. Further fuel cell tests show a maximum power density as high as 747 mW/cm(2) at low Pt loading, which is more than 2 times higher than that of fuel cells with the pristine graphene electrode.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical analysis of reactant transport in the novel tubular polymer electrolyte membrane fuel cells

In present work, numerical analysis of three novel PEM fuel cells with tubular geometry was conducted. Tree different cross section was considered for PEM, namely: circular, square and triangular. Similar boundary and operational conditions is applied for all the geometries. At first, the obtained polarization curve for basic architecture fuel cells was validated with experimental data and then...

متن کامل

One –step synthesis of PdCo alloy nanoparticles decorated on reduced grahene oxide as an Electro-catalyst for Oxygen Reduction Reaction in Passive Direct Methanol Fuel Cells

We report a Pd-Co (3:1)/graphene oxide (Pd3Co /GO) catalyst through a one-step strategy. GO is synthesized from graphite electrodes using ionic liquid-assisted electrochemical exfoliation. Controllable GO-supported Pd3Co electrocatalystis then was reduced by ethylene glycol as a stabilizing agent to prepare highly dispersed PdCo nanoparticles on carbon graphene oxide to be used as oxygen reduct...

متن کامل

Experimental Study on a 1000W Dead-End H2/O2 PEM Fuel Cell Stack with Cascade Type for Improving Fuel Utilization

Proton exchange membrane fuel cells (PEMFCs) with a dead-ended anode and cathode can obtain high hydrogen and oxygen utilization by a comparatively simple system. Nevertheless, the accumulation of the water in the anode and cathode channels might cause a local fuel starvation degrading the performance and durability of PEMFCs. In this study, a brand new design for a polymer electrolyte membrane...

متن کامل

Partially unzipped carbon nanotubes as a superior catalyst support for PEM fuel cells.

Partially unzipped carbon nanotubes prepared by strong oxidation and thermal expansion of carbon nanotubes were explored as an advanced catalyst support for PEM fuel cells. The unique hybrid structure of 1D nanotube and 2D double-side graphene resulted in an outstanding electrocatalytic performance.

متن کامل

Impact of anisotropy level of gas diffusion layer on the temperature distribution of a PEM fuel cell cathode electrode

Proton exchange membrane (PEM) fuel cells being employed in fuel cell vehicles (FCVs) are promising power generators producing electric power from fuel stream via porous electrodes. Structure of carbon paper gas diffusion layers (GDLs) applying in the porous electrodes can have a great influence on the PEM fuel cell performance and distribution of temperature, especially at the cathode side whe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015